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ABSTRACT

Shear banding is a ubiquitous phenomenon observed in soft materials, including soaps, shampoos,
pastes, gels, and food products. Strong shearing deformations can develop localized velocity bands
with different shear rates, known as shear bands. Although it is a common phenomenon in soft
materials, the mechanisms giving rise to shear band formation are not always the same. Here we
have developed a novel thermodynamically consistent two-fluid model to study steady-state shear
banding in semi-dilute entangled polymer solutions. This model is based on the hypothesis that
shear banding is caused by diffusion. In contrast to previous approaches, the formulation of the
boundary conditions is straightforward, as the differential velocity is considered as a state variable.
The behavior of the model was analyzed for a cylindrical Couette flow and a rectilinear channel
flow. We confirmed that stress-induced migration is the diffusive term responsible for the formation
of shear bands. The steady-state solution is smooth and unique with respect to different deformation
histories and different values of the diffusivity constant. The finding that polymeric materials can
form strongly inhomogeneous concentration profiles is also of importance for the development and
optimization of industrial processes. The simplicity of this model makes it attractive for use in
more complex industrial flows.

1 INTRODUCTION

Under strong shearing deformations, semi-dilute entangled polymer solutions can develop inho-
mogeneous regions in the flow, including multiple localized velocity bands with different shear
rates, known as shear bands. Typically, the shear stress of these polymer solutions monotonically
increases with the shear rate. Several one-fluid reptation models such as the Rolie-Poly model!
can realistically capture the flow curve and predict transient banding. However, there is experi-
mental evidence for the possibility that shear bands can also exist at steady state.>> Furthermore,
experimental data suggest that polymer solutions can form spatially inhomogeneous concentration
profiles *2 Accordingly, it has been hypothesized that the mechanism giving rise to shear banding
is the coupling between the polymer stress and concentration through diffusion !’

The two-fluid method is appropriate for investigating diffusional processes in complex fluids. In
this approach, it is assumed that the local gradients in concentration and viscoelastic stress generate
a difference between the velocities of the polymer and the solvent molecules, which allows them
to diffuse at different speeds. Cromer et al® developed a two-fluid model for semi-dilute entangled
polymer solutions using kinetic theory. In their model, the diffusive terms were included in the time
evolution equation for the polymer concentration. Therefore, to conserve the polymer concentra-
tion, a no-flux condition at boundaries was necessary. To construct the other boundary conditions,
the differential velocity vanishes at the boundaries. To predict the polymer stress more reliably
at rapid deformations, the Rolie-Poly model was used to describe conformational dynamics. Ger-
mann et al®? recently developed a two-fluid approach using the generalized bracket approach of



non-equilibrium thermodynamics. The advantage of this new approach is that the differential ve-
locity is treated as a state variable. Consequently, the additional boundary conditions arising from
the derivative diffusive terms can be imposed directly with respect to this variable. Furthermore,
the description can be easily extended to multiphase systems as the total mass is conserved by the
time evolution equations themselves.

Cromer and coworkers studied shear banding in semi-dilute entangled polymer solutions for
Couette flows between parallel plates and concentric cylinders.®” Although the shear banding be-
havior of these polymeric systems has yet to be theoretically studied for Poiseuille flows, numerical
predictions by the Vasquez-Cook-McKinley (VCM) model are available for wormlike micellar so-
lutions 1% It was numerically shown for wormlike micelles that above a critical pressure gradient,
the velocity profile exhibits a plug-like profile with a high shear band near the walls and a low
shear band near the center of the channel. The kink separating these bands is related to the local
maximum in the profile of the first normal stress difference. Furthermore, the volumetric flow rate
undergoes a spurt as the pressure gradient is increased above a critical value.

Here we aimed to adopt the new two-fluid approach to describe the diffusion banding in semi-
dilute entangled polymer solutions within either a cylindrical Couette flow or a Poiseuille channel
flow. The remainder of this report is organized as follows. In Sec. 2] we describe the two-fluid
method. The behavior of the model is analyzed for the flows in Sec. [3|and the conclusion is drawn
in Sec. ]

2 POLYMER MODEL

In this section, we present a new two-fluid model for semi-dilute entangled polymer solutions
developed using the two-fluid framework of generalized bracket approach of nonequilibrium ther-
modynamics.®? The total system is considered to be closed, isothermal, and incompressible. This
system consists of one polymeric species and one viscous solvent. For the polymer, we define the
following variables: the mass density p,, the momentum density m” = p,v”, and the conformation
tensor ¢/, defined as the second-moment of the end-to-end vector of the polymer chains. Further-
more, v” denotes the velocity field and n, = (p,/M,)N4 the polymer number density, with M,
being the molecular weight of the polymer and N4 the Avogadro constant. For the viscous solvent,
the following variables are defined: the mass density p; and the momentum density m* = p,v’,
where v is the velocity field. The governing time evolution equations are given as
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Eq. is the Cauchy momentum balance, with ¢ being the time, p = p, + p; the total constant
mass of the polymer solution, p the pressure, v the total average velocity of the polymer solution,



and o the total extra stress. Eq. is the time evolution equation for the differential velocity Av,
where K is the modulus of elasticity, kp the Boltzmann constant, 7' the absolute temperature, 1)
the viscosity of the solvent, Gy the modulus of elasticity, D the diffusivity constant, and 67 the
extra stress associated with the polymer. The divergence of 6 accounts for the stress-induced
migration and the spatial gradients of the number densities describe the Fickian diffusion. Eq. (3)
is the time evolution equation for the polymer concentration. It is a material derivative that accounts
for the fact that the polymer concentration can vary locally. Eq. is the time evolution equation
for the conformation of the polymer. The left-hand side and the first three terms on the right-
hand side constitute the upper-convected time derivative. The fourth term on the right-hand side
is the Giesekus relaxation accounting for hydrodynamic interactions, with o being the anisotropy
factor. This term was added to capture the overshoot of the shear stress during the start-up of a
simple shearing flow triggering the shear band formation. The fifth term in Eq. (4) is a nonlinear
relaxation term that we added to capture the upturn of the flow curve at high shear rates. The
power-law pre-factor [K /(kgT )tre — 3]7 is a scalar function of the trace of the conformation tensor,
which is a relative measure for polymer extension. Note that this term closely resembles the term
used in the Rolie-Poly model to describe convective constraint release including chain stretch.!' The
last term of Eq. (4) controls the smoothness of the profiles according to the value of the nonlocal
diffusivity D,,,,0c- The time evolution equations are closed by an explicit expression for the extra
stress

o = 6"+, [Vvs + (VvS)T]
= n, (Ke — kgTX) + 1, [VVS + (VvS)T} , )

where the first term accounts for the viscoelastic stress associated with the polymer and the second
term for the contribution of the viscous solvent. The phase velocities associated with the polymer
and the solvent can be calculated using the total average velocity and the differential velocity as
follows:

vl =v+ %AV, (6)
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In the new model, the differential velocity is considered as a state variable. The extra boundary
conditions arising from the derivative terms appearing in Eq. (2) can be directly formulated with
respect to this variable. For instance, no-slip and no-penetration conditions are recovered if the tan-
gential and normal components of the differential velocity are set to zero at the walls, respectively.
Furthermore, the additional stress-diffusive term appearing in Eq. (4) requires special treatment on
the boundaries. We set the parameter D,,,,;,. €qual to zero on the solid walls since diffusion should
vanish at these locations within a distance less than the radius of the Gyration because of local
surface effects.

We worked with dimensionless quantities. Location is scaled by the characteristic length H,
time is scaled by the characteristic relaxation time 7 = 7 /A, the extra stress and the conformation
tensor are scaled as 6 = 6/Gy and ¢ = (K /kgT)c, respectively, where Gy = nngT. The dimen-
sionless parameters with respect to these scalings are the elasticity number E = G07L12 /pH?, the
ratio of the molecular weight of the solvent to that of the polymer y = M;/M,, the polymer initial
concentration U = npeg/(Mpeg + XMseq), Where npqq and ng., denote the polymer and the solvent
number densities at the equilibrium state of rest, respectively, the viscosity ratio B = 1/, the ra-



tio of the characteristic relaxation times € = 4; /A;, and the local and nonlocal diffusivity constants
D = DAy /H? and D,p10c = DponiocM /H?, respectively.

3 RESULTS AND DISCUSSION
The model was solved for a cylindrical Couette flow and a Poiseuille channel flow. The model
parameters were determined by fitting to the steady shear rheology of a 10 wt/wt% (1.6M) polybu-
tadiene solution ! The flow problem was solved using a Chebyshev pseudospectral procedure with
200 discretization points as described in Refs&212

For the cylindrical Couette flow, we used the cylindrical coordinate system as the reference
frame. The characteristic length is given as H = R, — R;, where R, and R; are the radii of the outer
and inner cylinders, respectively. Subsequently, we take the normalized coordinate 7 = (r—R;)/H
to indicate the location in the cylindrical gap. The outer cylinder is kept stationary, whereas the
inner cylinder rotates with the azimuthal velocity specified as in Refs.:5°

Vg (7" = 0,7) = Witanh(ar) . (8)

Here, a denotes the dimensionless ramp rate of the rheometer and Wi = 1,V /H the Weissenberg
number with V being the dimensional angular velocity.

Fig.|l|shows the steady-state profile of the polymer number density with and without the stress-
induced migration. It is obvious that stress-induced migration is responsible for the occurrence of
the shear bands. The horizontal line indicates that the polymer number density is nearly uniform
across the cylindrical gap if the stress-induced term is ignored.
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Figure 1. The number density of the polymer is calculated for the model with and without the
term corresponding to stress-induced migration. The values of the model parameters used in the
calculation were o = 0.73, € = 0.0025, ¢ = 1.46, Wi=6, 3 =E~' =107, u = x = 107!, and

D = Dyonioc = 1073~

Figure 2(a) and [2(b) display the effect of the Weissenberg number on the steady-state profiles
of the velocity and polymer number density, respectively. Two distinct shear bands can be seen
for 3 < Wi < 63. If we increase the Wi parameter, the kink separating the bands moves from the
rotating inner wall to the stationary outer wall. The profile of the polymer concentration is banded,
which is in contrast to the predictions of standard polymer models. The curvature of the geometry
justifies the curved shape of this profile.
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Figure 2. The profiles of (a) the velocity and (b) the polymer number density calculated for
different Weissenberg numbers. The other model parameters are the same as those given in the
legend of Figure|T}

Figure [3] shows how the deformation history affects the steady-state profile of the polymer
number density. This was determined by ramp-up and ramp-down tests. We started the ramp-
up test from rest and the ramp-down test from the steady-state solution at Wi = 100. A unique
steady-state solution was obtained independent of the deformation history.
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Figure 3. Steady-state profiles of the polymer number density calculated using different
deformation histories. The model parameters are the same as those given in the legend of Figure

Figure@ shows the effect of the nonlocal diffusivity constant D,,,,,;,. on the steady-state velocity
profile. The profile is smoother for larger values of D,,,nioc-

For the Poiseuille flow in a rectilinear channel, we used the cartesian coordinate system with the
origin at the centerline. The walls are kept stationary whereas a nonzero dimensionless pressure
gradient P, = ApH /LG is applied in the x-direction. To avoid unnecessary computations, we
solved the model for half of the channel.

Figure [5] shows the effect of the value of the pressure gradient on the steady-state profiles of
the velocity and the polymer concentration across the gap. Here, ¥ denotes the location in the
channel width, with ¥ = 0 and 0.5 corresponding to the centerline and the wall, respectively. The
velocity profile forms a low shear rate band near the center and a high shear rate band near the
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Figure 4. Effect of the nonlocal diffusivity constant on the steady-state profile of the velocity. The
other model parameters are the same as those given in the legend of Figure m

wall. A striking difference to the predictions of the VCM model is that the transition between the
shear bands is smooth even in the case of zero stress diffusion. Furthermore, the plug-like profile
is observed over a wider range of the dimensionless pressure gradients (i.e., for 1 < P, < 200).
The concentration bands are also predicted for the same range. For larger pressure gradients, the
polymer concentration is more homogeneous with the kink closer to the centerline. It is worth
noting that in contrast to the VCM model, this solution is unique for all pressure gradients and no
hysteresis is observed in ramp up/down tests.
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Figure 5. Influence of the pressure gradient on the steady-state profiles of the (a) velocity and (b)
polymer concentration across the channel. The values of the model parameters used in the
calculation were & = 0.73, £ = 0.0025, g =146, =E ' =10, u=x =10"!, and
D = Dyonioc = 1073

4 SUMMARY AND CONCLUSIONS

Using the generalized bracket approach of nonequilibrium thermodynamics, we have developed
a two-fluid model to study shear banding in semi-dilute entangled polymer solutions. Unlike in
previous two-fluid models, the differential velocity is treated as a state variable, which makes the



specification of the extra boundary conditions straightforward. We used the Giesekus relaxation
in the polymer conformation equation to account for hydrodynamic interactions and to capture the
overshoot of the shear stress. We added a nonlinear relaxation term to predict the upturn of the
flow curve at high shear rates. This term is similar to the term used in the Rolie-Poly model, which
describes convective constraint release and chain stretch. Moreover, a stress-diffusive term was
added to the conformation equation to control the smoothness of the profiles. We found that the
stress-induced migration is the diffusive term responsible for the formation of the shear bands. The
steady-state profiles are smooth and unique with respect to applied deformation history and the
value of the diffusivity constant. Further boundary conditions such as slip conditions can be easily
investigated if the differential velocity is treated as a state variable. The finding that polymeric
materials can form strongly inhomogeneous concentration profiles as a result of diffusion is of
importance for the development and optimization of industrial processes. The simplicity of our
model makes it attractive for the study of complex industrial flows.
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